IBM PC



А что потом? - часть 2


Интересно, что решение от MMC Technology, при наличии PMR-головок чтения/записи с соответствующими возможностями, позволяет добиться плотности размещения информации до 175 Гбайт на стандартной 3,5-дюймовой пластине (в сравнении с нынешними 80 Гбайт). Достигается это за счет уменьшения размеров зерен в рабочем слое с 8 до 6 нм, с помощью перпендикулярного метода.

Впрочем, сильного прироста быстродействия от внедрения технологии перпендикулярной записи не последует. Дело в том, что в основу новых жестких дисков все равно будет положен прежний принцип магнитной записи, уходящий корнями в 70-е годы прошлого века, когда компания IBM разработала и создала первый винчестер. Это в итоге, так или иначе, наложит на новые устройства определенные ограничения в плане производительности.

Однако как бы то ни было, но революции в области хранения информации не миновать. И по мнению ученых революционная ситуация уже назрела, поскольку в настоящее время найден целый ряд новых магнитных материалов, которые смогли бы заменить стандартные алюминиевые пластины современных жестких дисков. Так, группа исследователей из Швейцарии, Италии, Франции и Германии сообщила о наблюдении рекордно высокого уровня энергии магнитной анизотропии (MAE) в кобальте на платиновой подложке, превысившей 9 мэВ. Этот результат, уверены ученые, поможет лучше понять суть явлений магнетизма в молекулярном масштабе и создать новые магнитные материалы для носителей информации. Магнитная анизотропия характеризует степень упорядоченности магнитных моментов атомов. Обычно чем больше величина энергии магнитной анизотропии, тем выше намагниченность. В эксперименте использовался тонкий слой кобальта, нанесенный на платиновую подложку с применением молекулярной эпитаксии (метода синтеза модулированных структур). Для определения энергии магнитной анизотропии к образцу прикладывалось поле до 7 Тесла, после чего измерялась величина остаточной намагниченности. Величина MAE в эксперименте составила 9,3 +/- 1,6 мэВ, что примерно в 200 раз больше, чем в обычном кристаллическом состоянии кобальта. Кстати, энергия магнитной анизотропии у самаристого кобальта, применяемого в так называемых постоянных магнитах, составляет около 1,8 мэВ на атом. Высокая энергия магнитной анизотропии позволяет значительно уменьшить количество атомов, участвующих в формировании намагниченности, различимой считывающим устройством. Если сейчас требуется около 100000 атомов на бит, то для нового материала - несколько сотен, а значит, возможно существенное увеличение плотности записи информации.




Начало  Назад  Вперед